June 2006 6681 Mechanics M5 Mark Scheme

www.mymainscioud.com

Question Number	Scheme	Marks
1. (a)	$\frac{\chi}{1} = \int_{2\pi}^{2\pi} \frac{m}{2\pi} x^2 dx$	71
	$= \frac{m}{2\alpha} \left[\frac{1}{2\alpha} \right]^{2\alpha}$	61
	$=\frac{4}{3}m^2$	A1 (3)
(b)	In Ix = Iy = free (shetching rule)	4)
	$J_{\chi} = I_{\chi} + J_{\chi} = \frac{g}{3}m_{c}^{2} \left(\int_{-\infty}^{\infty} e^{\chi} e^{\chi} \right)$	MIAI (3)
2.	$d = \begin{pmatrix} 4 \\ -5 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = 2i + 2j - k$	81
	$F.(21+2j-k) = \frac{1}{2}x\frac{1}{2}k12^{k} = 36$	MI A2_
	but $\underline{F} = \lambda (2\underline{i} + 2\underline{j} - \underline{k})$ (particle startistication)	m
	$\Rightarrow \lambda(2\underline{i}+2\underline{j}-\underline{k}) \cdot (2\underline{i}+2\underline{j}-\underline{k}) = \frac{36}{7\lambda} = 36$	nl
	$=) \qquad $	AL
	$\underline{F}_{2} = 4 \begin{pmatrix} 2 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \frac{7i + 6j - 3k}{-3k}$	h1 41
3.(0)	$m^2 - 2m = m(m-2) = 0$	11
	$=) m = 0 m m = 2$ $=) r = A + Be^{2t}$	AI
	$t=0, r=31 \Rightarrow A+B=31$	HIAI
	$\dot{r} = 2Bc^{2t}$	nı
	キョの, ビーチ ⇒ 医= 主子	A-1
	$\implies r = (3i - \frac{1}{2j}) + \frac{1}{2j}e^{2t} = 3i + \frac{1}{2j}(e^{2t} - i)$	AI (8)
(6)	Patide moves in a straight hire	BI
	Equation of live is x=3	B1 (2)

		Marks
Question Number	Scheme	Marks Marks
4. (o)	$\underline{R} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} = \underline{(4 + 2k)} N$	MI AI (2)
(6)	$ \begin{pmatrix} -1 \\ + \\ -1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} \times \begin{pmatrix} -1 \\ -1 \end{pmatrix} \times \begin{pmatrix} -1 \\ -1 \end{pmatrix} $	ы
	$= \begin{pmatrix} 0 \\ 0 \\ -6 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix} + \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$	A) A) A
	$= \begin{pmatrix} 3\\3\\3 \end{pmatrix}$	A 1
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} 4 \\ 0 \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ -6 \end{pmatrix}$	ы
	$\begin{pmatrix} 2y \\ 42-2x \\ -4y \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \\ -6 \end{pmatrix}$	AI-FE.
	e.g. $x = -3l_2$, $y = 3l_2$, $z = 0$	BI
	$\underline{\underline{r}} = \begin{pmatrix} -\Im_{l_{2}} \\ \Im_{l_{2}} \\ \circ \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ \circ \\ i \end{pmatrix}$	HI A (10)
5.(0)	$mv = (m+\delta m)(v+\delta v) + (-\delta m)(k+v+\delta v)$ $mv = mv + m\delta v + v \delta m - k \delta m - v \delta m$	HI AS
	Kon = mout	M
	In the bout, as St-10,	
	$\frac{dm}{dv} = \frac{m}{k}$	A1 (6)
(6)	$\frac{dm}{K} = \int \frac{dv}{K}$	м
	$\ln m - \ln M = \frac{1}{4} (V - u)$	AL
	$l_{M} = \frac{1}{\mu} \left(\frac{V - \mu}{\mu} \right)$ $m_{I} = M e^{\left(\frac{V - \mu}{\mu} \right)}$ $\frac{V - \mu}{\mu}$	הו
	m = Melter Ymy	A-)
	Amount of fuel = M-my = M(I-e K)	mIA1
		6)
		(12)

.